Many classes have shortcut names used when creating (instantiating) a class with a
configuration object. The shortcut name is referred to as an alias
(or xtype
if the
class extends Ext.Component). The alias/xtype is listed next to the class name of
applicable classes for quick reference.
Framework classes or their members may be specified as private
or protected
. Else,
the class / member is public
. Public
, protected
, and private
are access
descriptors used to convey how and when the class or class member should be used.
Public classes and class members are available for use by any other class or application code and may be relied upon as a stable and persistent within major product versions. Public classes and members may safely be extended via a subclass.
Protected class members are stable public
members intended to be used by the
owning class or its subclasses. Protected members may safely be extended via a subclass.
Private classes and class members are used internally by the framework and are not intended to be used by application developers. Private classes and members may change or be omitted from the framework at any time without notice and should not be relied upon in application logic.
static
label next to the
method name. *See Static below.Below is an example class member that we can disect to show the syntax of a class member (the lookupComponent method as viewed from the Ext.button.Button class in this case).
Let's look at each part of the member row:
lookupComponent
in this example)( item )
in this example)Ext.Component
in this case). This may be omitted for methods that do not
return anything other than undefined
or may display as multiple possible values
separated by a forward slash /
signifying that what is returned may depend on the
results of the method call (i.e. a method may return a Component if a get method calls is
successful or false
if unsuccessful which would be displayed as
Ext.Component/Boolean
).PROTECTED
in
this example - see the Flags section below)Ext.container.Container
in this example). The source
class will be displayed as a blue link if the member originates from the current class
and gray if it is inherited from an ancestor or mixed-in class.view source
in the example)item : Object
in the example).undefined
a "Returns" section
will note the type of class or object returned and a description (Ext.Component
in the
example)Available since 3.4.0
- not pictured in
the example) just after the member descriptionDefaults to: false
)The API documentation uses a number of flags to further commnicate the class member's function and intent. The label may be represented by a text label, an abbreviation, or an icon.
classInstance.method1().method2().etc();
false
is returned from
an event handler- Indicates a framework class
- A singleton framework class. *See the singleton flag for more information
- A component-type framework class (any class within the Ext JS framework that extends Ext.Component)
- Indicates that the class, member, or guide is new in the currently viewed version
- Indicates a class member of type config
- Indicates a class member of type property
- Indicates a class member of type
method
- Indicates a class member of type event
- Indicates a class member of type
theme variable
- Indicates a class member of type
theme mixin
- Indicates that the class, member, or guide is new in the currently viewed version
Just below the class name on an API doc page is a row of buttons corresponding to the types of members owned by the current class. Each button shows a count of members by type (this count is updated as filters are applied). Clicking the button will navigate you to that member section. Hovering over the member-type button will reveal a popup menu of all members of that type for quick navigation.
Getting and setter methods that correlate to a class config option will show up in the methods section as well as in the configs section of both the API doc and the member-type menus just beneath the config they work with. The getter and setter method documentation will be found in the config row for easy reference.
Your page history is kept in localstorage and displayed (using the available real estate) just below the top title bar. By default, the only search results shown are the pages matching the product / version you're currently viewing. You can expand what is displayed by clicking on the button on the right-hand side of the history bar and choosing the "All" radio option. This will show all recent pages in the history bar for all products / versions.
Within the history config menu you will also see a listing of your recent page visits. The results are filtered by the "Current Product / Version" and "All" radio options. Clicking on the button will clear the history bar as well as the history kept in local storage.
If "All" is selected in the history config menu the checkbox option for "Show product details in the history bar" will be enabled. When checked, the product/version for each historic page will show alongside the page name in the history bar. Hovering the cursor over the page names in the history bar will also show the product/version as a tooltip.
Both API docs and guides can be searched for using the search field at the top of the page.
On API doc pages there is also a filter input field that filters the member rows using the filter string. In addition to filtering by string you can filter the class members by access level, inheritance, and read only. This is done using the checkboxes at the top of the page.
The checkbox at the bottom of the API class navigation tree filters the class list to include or exclude private classes.
Clicking on an empty search field will show your last 10 searches for quick navigation.
Each API doc page (with the exception of Javascript primitives pages) has a menu view of metadata relating to that class. This metadata view will have one or more of the following:
Ext.button.Button
class has an alternate class name of Ext.Button
). Alternate class
names are commonly maintained for backward compatibility.Runnable examples (Fiddles) are expanded on a page by default. You can collapse and expand example code blocks individually using the arrow on the top-left of the code block. You can also toggle the collapse state of all examples using the toggle button on the top-right of the page. The toggle-all state will be remembered between page loads.
Class members are collapsed on a page by default. You can expand and collapse members using the arrow icon on the left of the member row or globally using the expand / collapse all toggle button top-right.
Viewing the docs on narrower screens or browsers will result in a view optimized for a smaller form factor. The primary differences between the desktop and "mobile" view are:
The class source can be viewed by clicking on the class name at the top of an API doc page. The source for class members can be viewed by clicking on the "view source" link on the right-hand side of the member row.
Manages context information during a layout.
This class performs the following jobs:
Work done during layout falls into either a "read phase" or a "write phase" and it is essential to always be aware of the current phase. Most methods in Ext.layout.Layout are called during a read phase: calculate, completeLayout and finalizeLayout. The exceptions to this are beginLayout, beginLayoutCycle and finishedLayout which are called during a write phase. While finishedLayout is called a write phase, it is really intended to be a catch-all for post-processing after a layout run.
In a read phase, it is OK to read the DOM but this should be done using the appropriate Ext.layout.ContextItem where possible since that provides a cache to avoid redundant reads. No writes should be made to the DOM in a read phase! Instead, the values should be written to the proper ContextItem for later write-back.
The rules flip-flop in a write phase. The only difference is that ContextItem methods like getStyle will still read the DOM unless the value was previously read. This detail is unknowable from the outside of ContextItem, so read calls to ContextItem should also be avoided in a write phase.
Calculating interdependent layouts requires a certain amount of iteration. In a given cycle, some layouts will contribute results that allow other layouts to proceed. The general flow then is to gather all of the layouts (both component and container) in a component tree and queue them all for processing. The initial queue order is bottom-up and component layout first, then container layout (if applicable) for each component.
This initial step also calls the beginLayout method on all layouts to clear any values from the DOM that might interfere with calculations and measurements. In other words, this is a "write phase" and reads from the DOM should be strictly avoided.
Next the layout enters into its iterations or "cycles". Each cycle consists of calling the calculate method on all layouts in the layoutQueue. These calls are part of a "read phase" and writes to the DOM should be strictly avoided.
RULE 1: Respect the read/write cycles. Always use the getProp or getDomProp methods to get calculated values; only use the getStyle method to read styles; use setProp to set DOM values. Some reads will, of course, still go directly to the DOM, but if there is a method in Ext.layout.ContextItem to do a certain job, it should be used instead of a lower-level equivalent.
The basic logic flow in calculate consists of gathering
values by calling getProp or
getDomProp, calculating results and publishing
them by calling setProp. It is important to realize
that getProp will return undefined
if the value
is not yet known. But the act of calling the method is enough to track the fact that the
calling layout depends (in some way) on this value. In other words, the calling layout is
"triggered" by the properties it requests.
RULE 2: Avoid calling getProp unless the value is needed. Gratuitous calls cause inefficiency because the layout will appear to depend on values that it never actually uses. This applies equally to getDomProp and the test-only methods hasProp and hasDomProp.
Because getProp can return undefined
, it is often
the case that subsequent math will produce NaN's. This is usually not a problem as the
NaN's simply propagate along and result in final results that are NaN. Both undefined
and NaN are ignored by Ext.layout.ContextItem#setProp, so it is often not necessary
to even know that this is happening. It does become important for determining if a layout
is not done or if it might lead to publishing an incorrect (but not NaN or undefined
)
value.
RULE 3: If a layout has not calculated all the values it is required to calculate, it
must set done to false
before returning from
calculate. This value is always true
on entry because
it is simpler to detect the incomplete state rather than the complete state (especially up
and down a class hierarchy).
RULE 4: A layout must never publish an incomplete (wrong) result. Doing so would cause dependent layouts to run their calculations on those wrong values, producing more wrong values and some layouts may even incorrectly flag themselves as done before the correct values are determined and republished. Doing this will poison the calculations.
RULE 5: Each value should only be published by one layout. If multiple layouts attempt to publish the same values, it would be nearly impossible to avoid breaking RULE 4. To help detect this problem, the layout diagnostics will trap on an attempt to set a value from different layouts.
Complex layouts can produce many results as part of their calculations. These values are important for other layouts to proceed and need to be published by the earliest possible call to Ext.layout.Layout#calculate to avoid unnecessary cycles and poor performance. It is also possible, however, for some results to be related in a way such that publishing them may be an all-or-none proposition (typically to avoid breaking RULE 4).
RULE 6: Publish results as soon as they are known to be correct rather than wait for all values to be calculated. Waiting for everything to be complete can lead to deadlock. The key here is not to forget RULE 4 in the process.
Some layouts depend on certain critical values as part of their calculations. For example, HBox depends on width and cannot do anything until the width is known. In these cases, it is best to use block or domBlock and thereby avoid processing the layout until the needed value is available.
RULE 7: Use block or domBlock when values are required to make progress. This will mimize wasted recalculations.
RULE 8: Blocks should only be used when no forward progress can be made. If even one value could still be calculated, a block could result in a deadlock.
Historically, layouts have been invoked directly by component code, sometimes in places
like an afterLayout
method for a child component. With the flexibility now available
to solve complex, iterative issues, such things should be done in a responsible layout
(be it component or container).
RULE 9: Use layouts to solve layout issues and don't wait for the layout to finish to perform further layouts. This is especially important now that layouts process entire component trees and not each layout in isolation.
The simplest sequence diagram for a layout run looks roughly like this:
Context Layout 1 Item 1 Layout 2 Item 2
| | | | |
---->X-------------->X | | |
run X---------------|-----------|---------->X |
X beginLayout | | | |
X | | | |
A X-------------->X | | |
X calculate X---------->X | |
X C X getProp | | |
B X X---------->X | |
X | setProp | | |
X | | | |
D X---------------|-----------|---------->X |
X calculate | | X---------->X
X | | | setProp |
E X | | | |
X---------------|-----------|---------->X |
X completeLayout| | F | |
X | | | |
G X | | | |
H X-------------->X | | |
X calculate X---------->X | |
X I X getProp | | |
X X---------->X | |
X | setProp | | |
J X-------------->X | | |
X completeLayout| | | |
X | | | |
K X-------------->X | | |
X---------------|-----------|---------->X |
X finalizeLayout| | | |
X | | | |
L X-------------->X | | |
X---------------|-----------|---------->X |
X finishedLayout| | | |
X | | | |
M X-------------->X | | |
X---------------|-----------|---------->X |
X notifyOwner | | | |
N | | | | |
- - - - -
Notes:
A. This is a call from the run method to the run method. Each layout in the queue will have its calculate method called.
B. After each calculate method is called the done flag is checked to see if the Layout has completed. If it has completed and that layout object implements a completeLayout method, this layout is queued to receive its call. Otherwise, the layout will be queued again unless there are blocks or triggers that govern its requeueing.
C. The call to getProp is made to the Item and that will be tracked as a trigger (keyed by the name of the property being requested). Changes to this property will cause this layout to be requeued. The call to setProp will place a value in the item and not directly into the DOM.
D. Call the other layouts now in the first cycle (repeat B and C for each layout).
E. After completing a cycle, if progress was made (new properties were written to the context) and if the layoutQueue is not empty, the next cycle is run. If no progress was made or no layouts are ready to run, all buffered values are written to the DOM (a flush).
F. After flushing, any layouts that were marked as done that also have a completeLayout method are called. This can cause them to become no longer done (see invalidate). As with calculate, this is considered a "read phase" and direct DOM writes should be avoided.
G. Flushing and calling any pending completeLayout methods will likely trigger layouts that called getDomProp and unblock layouts that have called domBlock. These variants are used when a layout needs the value to be correct in the DOM and not simply known. If this does not cause at least one layout to enter the queue, we have a layout FAILURE. Otherwise, we continue with the next cycle.
H. Call calculate on any layouts in the queue at the start of this cycle. Just a repeat of B through G.
I. Once the layout has calculated all that it is resposible for, it can leave itself in the done state. This is the value on entry to calculate and must be cleared in that call if the layout has more work to do.
J. Now that all layouts are done, flush any DOM values and completeLayout calls. This can again cause layouts to become not done, and so we will be back on another cycle if that happens.
K. After all layouts are done, call the finalizeLayout method on any layouts that have one. As with completeLayout, this can cause layouts to become no longer done. This is less desirable than using completeLayout because it will cause all finalizeLayout methods to be called again when we think things are all wrapped up.
L. After finishing the last iteration, layouts that have a finishedLayout method will be called. This call will only happen once per run and cannot cause layouts to be run further.
M. After calling finahedLayout, layouts that have a notifyOwner method will be called. This call will only happen once per run and cannot cause layouts to be run further.
N. One last flush to make sure everything has been written to the DOM.
Many layout problems require collaboration between multiple layouts. In some cases, this is as simple as a component's container layout providing results used by its component layout or vise-versa. A slightly more distant collaboration occurs in a box layout when stretchmax is used: the child item's component layout provides results that are consumed by the ownerCt's box layout to determine the size of the children.
The various forms of interdependence between a container and its children are described by each components' size model.
To facilitate this collaboration, the following pairs of properties are published to the component's Ext.layout.ContextItem:
The value true
causes config
values to be stored on instances using a
property name prefixed with an underscore ("_") character. A value of false
stores config
values as properties using their exact name (no prefix).
Defaults to:
true
Available since: 5.0.0
The value true
instructs the initConfig
method to only honor values for
properties declared in the config
block of a class. When false
, properties
that are not declared in a config
block will be placed on the instance.
Defaults to:
true
Available since: 5.0.0
Setting this property to false
will prevent nulling object references
on a Class instance after destruction. Setting this to "async"
will delay
the clearing for approx 50ms.
Defaults to:
true
Available since: 6.2.0
Setting this property to true
will result in setting the object's
prototype to null
after the destruction sequence is fully completed.
After that, most attempts at calling methods on the object instance
will result in "method not defined" exception. This can be very helpful
with tracking down otherwise hard to find bugs like runaway Ajax requests,
timed functions not cleared on destruction, etc.
Note that this option can only work in browsers that support Object.setPrototypeOf
method, and is only available in debugging mode.
Defaults to:
false
Available since: 6.2.0
This value is used to detect layouts that cannot progress by checking the amount of cycles processed. The value should be large enough to satisfy all but exceptionally large layout structures. When the amount of cycles is reached, the layout will fail. This should only be used for debugging, layout failures should be considered as an exceptional occurrence.
Defaults to:
200
Available since: 5.1.1
This property is set to true
after the destroy
method is called.
Defaults to:
false
This property is set to true
during the call to initConfig
.
Defaults to:
false
Available since: 5.0.0
This property is set to true
if this instance is the first of its class.
Defaults to:
false
Available since: 5.0.0
This value is true
and is used to identify plain objects from instances of
a defined class.
Defaults to:
true
Get the reference to the current class from which this object was instantiated. Unlike Ext.Base#statics,
this.self
is scope-dependent and it's meant to be used for dynamic inheritance. See Ext.Base#statics
for a detailed comparison
Ext.define('My.Cat', {
statics: {
speciesName: 'Cat' // My.Cat.speciesName = 'Cat'
},
constructor: function() {
alert(this.self.speciesName); // dependent on 'this'
},
clone: function() {
return new this.self();
}
});
Ext.define('My.SnowLeopard', {
extend: 'My.Cat',
statics: {
speciesName: 'Snow Leopard' // My.SnowLeopard.speciesName = 'Snow Leopard'
}
});
var cat = new My.Cat(); // alerts 'Cat'
var snowLeopard = new My.SnowLeopard(); // alerts 'Snow Leopard'
var clone = snowLeopard.clone();
alert(Ext.getClassName(clone)); // alerts 'My.SnowLeopard'
Defaults to:
Base
This method applies a versioned, deprecation declaration to this class. This
is typically called by the deprecated
config.
deprecations : Object
Call the original method that was previously overridden with Ext.Base#override
Ext.define('My.Cat', {
constructor: function() {
alert("I'm a cat!");
}
});
My.Cat.override({
constructor: function() {
alert("I'm going to be a cat!");
this.callOverridden();
alert("Meeeeoooowwww");
}
});
var kitty = new My.Cat(); // alerts "I'm going to be a cat!"
// alerts "I'm a cat!"
// alerts "Meeeeoooowwww"
args : Array/Arguments
The arguments, either an array or the arguments
object
from the current method, for example: this.callOverridden(arguments)
Returns the result of calling the overridden method
Deprecated since version 4.1.0
Use method-callParent instead.
Call the "parent" method of the current method. That is the method previously overridden by derivation or by an override (see Ext#define).
Ext.define('My.Base', {
constructor: function (x) {
this.x = x;
},
statics: {
method: function (x) {
return x;
}
}
});
Ext.define('My.Derived', {
extend: 'My.Base',
constructor: function () {
this.callParent([21]);
}
});
var obj = new My.Derived();
alert(obj.x); // alerts 21
This can be used with an override as follows:
Ext.define('My.DerivedOverride', {
override: 'My.Derived',
constructor: function (x) {
this.callParent([x*2]); // calls original My.Derived constructor
}
});
var obj = new My.Derived();
alert(obj.x); // now alerts 42
This also works with static and private methods.
Ext.define('My.Derived2', {
extend: 'My.Base',
// privates: {
statics: {
method: function (x) {
return this.callParent([x*2]); // calls My.Base.method
}
}
});
alert(My.Base.method(10)); // alerts 10
alert(My.Derived2.method(10)); // alerts 20
Lastly, it also works with overridden static methods.
Ext.define('My.Derived2Override', {
override: 'My.Derived2',
// privates: {
statics: {
method: function (x) {
return this.callParent([x*2]); // calls My.Derived2.method
}
}
});
alert(My.Derived2.method(10); // now alerts 40
To override a method and replace it and also call the superclass method, use method-callSuper. This is often done to patch a method to fix a bug.
args : Array/Arguments
The arguments, either an array or the arguments
object
from the current method, for example: this.callParent(arguments)
Returns the result of calling the parent method
This method is used by an override to call the superclass method but bypass any overridden method. This is often done to "patch" a method that contains a bug but for whatever reason cannot be fixed directly.
Consider:
Ext.define('Ext.some.Class', {
method: function () {
console.log('Good');
}
});
Ext.define('Ext.some.DerivedClass', {
extend: 'Ext.some.Class',
method: function () {
console.log('Bad');
// ... logic but with a bug ...
this.callParent();
}
});
To patch the bug in Ext.some.DerivedClass.method
, the typical solution is to create an
override:
Ext.define('App.patches.DerivedClass', {
override: 'Ext.some.DerivedClass',
method: function () {
console.log('Fixed');
// ... logic but with bug fixed ...
this.callSuper();
}
});
The patch method cannot use method-callParent to call the superclass
method
since that would call the overridden method containing the bug. In
other words, the above patch would only produce "Fixed" then "Good" in the
console log, whereas, using callParent
would produce "Fixed" then "Bad"
then "Good".
args : Array/Arguments
The arguments, either an array or the arguments
object
from the current method, for example: this.callSuper(arguments)
Returns the result of calling the superclass method
This method is called to cleanup an object and its resources. After calling this method, the object should not be used any further in any way, including access to its methods and properties.
To prevent potential memory leaks, all object references will be nulled
at the end of destruction sequence, unless clearPropertiesOnDestroy
is set to false
.
Returns a specified config property value. If the name parameter is not passed, all current configuration options will be returned as key value pairs.
name : String (optional)
The name of the config property to get.
peek : Boolean (optional)
true
to peek at the raw value without calling the getter.
Defaults to: false
The config property value.
Returns the ContextItem for an element.
parent : Ext.layout.ContextItem
el : Ext.dom.Element
Returns the initial configuration passed to the constructor when instantiating this class.
Given this example Ext.button.Button definition and instance:
Ext.define('MyApp.view.Button', {
extend: 'Ext.button.Button',
xtype: 'mybutton',
scale: 'large',
enableToggle: true
});
var btn = Ext.create({
xtype: 'mybutton',
renderTo: Ext.getBody(),
text: 'Test Button'
});
Calling btn.getInitialConfig()
would return an object including the config
options passed to the create
method:
xtype: 'mybutton',
renderTo: // The document body itself
text: 'Test Button'
Calling btn.getInitialConfig('text')
returns 'Test Button'.
name : String (optional)
Name of the config option to return.
The full config object or a single config value
when name
parameter specified.
Initialize configuration for this class. a typical example:
Ext.define('My.awesome.Class', {
// The default config
config: {
name: 'Awesome',
isAwesome: true
},
constructor: function(config) {
this.initConfig(config);
}
});
var awesome = new My.awesome.Class({
name: 'Super Awesome'
});
alert(awesome.getName()); // 'Super Awesome'
instanceConfig : Object
this
Invalidates one or more components' layouts (component and container). This can be called before run to identify the components that need layout or during the run to restart the layout of a component. This is called internally to flush any queued invalidations at the start of a cycle. If called during a run, it is not expected that new components will be introduced to the layout.
components : Ext.Component/Array
An array of Components or a single Component.
full : Boolean
True if all properties should be invalidated, otherwise only those calculated by the component should be invalidated.
Adds a "destroyable" object to an internal list of objects that will be destroyed
when this instance is destroyed (via destroy
).
name : String
value : Object
The value
passed.
Queues a ContextItem to have its Ext.layout.ContextItem#flushAnimations method called.
item : Ext.layout.ContextItem
Queues a layout to have its Ext.layout.Layout#completeLayout method called.
layout : Ext.layout.Layout
Queues a layout to have its Ext.layout.Layout#finalizeLayout method called.
layout : Ext.layout.Layout
Queues a ContextItem for the next flush to the DOM. This should only be called by the Ext.layout.ContextItem class.
item : Ext.layout.ContextItem
replace : Boolean (optional)
If an item by that ID is already queued, replace it.
Defaults to: false
Queue a component (and its tree) to be invalidated on the next cycle.
item : Ext.Component/Ext.layout.ContextItem
The component or ContextItem to invalidate.
options : Object
An object describing how to handle the invalidation (see Ext.layout.ContextItem#invalidate for details).
Queues a layout for the next calculation cycle. This should not be called if the layout is done, blocked or already in the queue. The only classes that should call this method are this class and Ext.layout.ContextItem.
layout : Ext.layout.Layout
The layout to add to the queue.
Removes the ContextItem for an element from the cache and from the parent's "children" array.
el : Ext.dom.Element
parent : Ext.layout.ContextItem
Resets the given layout object. This is called at the start of the run and can also be called during the run by calling invalidate.
layout : Object
ownerContext : Object
firstTime : Object
Runs the layout calculations. This can be called only once on this object.
True if all layouts were completed, false if not.
Performs one layout cycle by calling each layout in the layout queue.
True if some progress was made, false if not.
Sets a single/multiple configuration options.
name : String/Object
The name of the property to set, or a set of key value pairs to set.
value : Object (optional)
The value to set for the name parameter.
this
Set the size of a component, element or composite or an array of components or elements.
item : Ext.Component/Ext.Component[]/Ext.dom.Element/Ext.dom.Element[]/Ext.dom.CompositeElement
The item(s) to size.
width : Number
The new width to set (ignored if undefined or NaN).
height : Number
The new height to set (ignored if undefined or NaN).
Get the reference to the class from which this object was instantiated. Note that unlike Ext.Base#self,
this.statics()
is scope-independent and it always returns the class from which it was called, regardless of what
this
points to during run-time
Ext.define('My.Cat', {
statics: {
totalCreated: 0,
speciesName: 'Cat' // My.Cat.speciesName = 'Cat'
},
constructor: function() {
var statics = this.statics();
alert(statics.speciesName); // always equals to 'Cat' no matter what 'this' refers to
// equivalent to: My.Cat.speciesName
alert(this.self.speciesName); // dependent on 'this'
statics.totalCreated++;
},
clone: function() {
var cloned = new this.self(); // dependent on 'this'
cloned.groupName = this.statics().speciesName; // equivalent to: My.Cat.speciesName
return cloned;
}
});
Ext.define('My.SnowLeopard', {
extend: 'My.Cat',
statics: {
speciesName: 'Snow Leopard' // My.SnowLeopard.speciesName = 'Snow Leopard'
},
constructor: function() {
this.callParent();
}
});
var cat = new My.Cat(); // alerts 'Cat', then alerts 'Cat'
var snowLeopard = new My.SnowLeopard(); // alerts 'Cat', then alerts 'Snow Leopard'
var clone = snowLeopard.clone();
alert(Ext.getClassName(clone)); // alerts 'My.SnowLeopard'
alert(clone.groupName); // alerts 'Cat'
alert(My.Cat.totalCreated); // alerts 3
Adds new config properties to this class. This is called for classes when they are declared, then for any mixins that class may define and finally for any overrides defined that target the class.
config : Object
mixinClass : Ext.Class (optional)
The mixin class if the configs are from a mixin.
Add methods / properties to the prototype of this class.
Ext.define('My.awesome.Cat', {
constructor: function() {
...
}
});
My.awesome.Cat.addMembers({
meow: function() {
alert('Meowww...');
}
});
var kitty = new My.awesome.Cat();
kitty.meow();
members : Object
The members to add to this class.
isStatic : Boolean (optional)
Pass true
if the members are static.
Defaults to: false
privacy : Boolean (optional)
Pass true
if the members are private. This
only has meaning in debug mode and only for methods.
Defaults to: false
Add / override static properties of this class.
Ext.define('My.cool.Class', {
...
});
My.cool.Class.addStatics({
someProperty: 'someValue', // My.cool.Class.someProperty = 'someValue'
method1: function() { ... }, // My.cool.Class.method1 = function() { ... };
method2: function() { ... } // My.cool.Class.method2 = function() { ... };
});
members : Object
this
Borrow another class' members to the prototype of this class.
Ext.define('Bank', {
money: '$$$',
printMoney: function() {
alert('$$$$$$$');
}
});
Ext.define('Thief', {
...
});
Thief.borrow(Bank, ['money', 'printMoney']);
var steve = new Thief();
alert(steve.money); // alerts '$$$'
steve.printMoney(); // alerts '$$$$$$$'
fromClass : Ext.Base
The class to borrow members from
members : Array/String
The names of the members to borrow
this
Create a new instance of this Class.
Ext.define('My.cool.Class', {
...
});
My.cool.Class.create({
someConfig: true
});
All parameters are passed to the constructor of the class.
the created instance.
Create aliases for existing prototype methods. Example:
Ext.define('My.cool.Class', {
method1: function() { ... },
method2: function() { ... }
});
var test = new My.cool.Class();
My.cool.Class.createAlias({
method3: 'method1',
method4: 'method2'
});
test.method3(); // test.method1()
My.cool.Class.createAlias('method5', 'method3');
test.method5(); // test.method3() -> test.method1()
alias : String/Object
The new method name, or an object to set multiple aliases. See flexSetter
origin : String/Object
The original method name
Returns the Ext.Configurator
for this class.
Get the current class' name in string format.
Ext.define('My.cool.Class', {
constructor: function() {
alert(this.self.getName()); // alerts 'My.cool.Class'
}
});
My.cool.Class.getName(); // 'My.cool.Class'
className
Used internally by the mixins pre-processor
name : Object
mixinClass : Object
Override members of this class. Overridden methods can be invoked via Ext.Base#callParent.
Ext.define('My.Cat', {
constructor: function() {
alert("I'm a cat!");
}
});
My.Cat.override({
constructor: function() {
alert("I'm going to be a cat!");
this.callParent(arguments);
alert("Meeeeoooowwww");
}
});
var kitty = new My.Cat(); // alerts "I'm going to be a cat!"
// alerts "I'm a cat!"
// alerts "Meeeeoooowwww"
Direct use of this method should be rare. Use Ext.define instead:
Ext.define('My.CatOverride', {
override: 'My.Cat',
constructor: function() {
alert("I'm going to be a cat!");
this.callParent(arguments);
alert("Meeeeoooowwww");
}
});
The above accomplishes the same result but can be managed by the Ext.Loader which can properly order the override and its target class and the build process can determine whether the override is needed based on the required state of the target class (My.Cat).
members : Object
The properties to add to this class. This should be specified as an object literal containing one or more properties.
this class