/** * @private * Singleton that provides methods used by the Ext.draw.Path * for hit testing and finding path intersection points. */Ext.define('Ext.draw.PathUtil', function() { var abs = Math.abs, pow = Math.pow, cos = Math.cos, acos = Math.acos, sqrt = Math.sqrt, PI = Math.PI; // For extra info see: http://pomax.github.io/bezierinfo/ return { singleton: true, requires: [ 'Ext.draw.overrides.hittest.Path', 'Ext.draw.overrides.hittest.sprite.Path' ], /** * @private * Finds roots of a cubic equation in t, where t lies in the interval of [0,1]. * Based on http://www.particleincell.com/blog/2013/cubic-line-intersection/ * @param P {Number[]} Cubic equation coefficients. * @return {Number[]} Returns an array of parametric intersection locations along the cubic, * with -1 indicating an out-of-bounds intersection * (before or after the end point or in the imaginary plane). */ cubicRoots: function(P) { var a = P[0], b = P[1], c = P[2], d = P[3]; if (a === 0) { return this.quadraticRoots(b, c, d); } // eslint-disable-next-line vars-on-top, one-var var A = b / a, B = c / a, C = d / a, Q = (3 * B - pow(A, 2)) / 9, R = (9 * A * B - 27 * C - 2 * pow(A, 3)) / 54, D = pow(Q, 3) + pow(R, 2), // Polynomial discriminant. t = [], S, T, Im, th, i, sign = Ext.Number.sign; if (D >= 0) { // Complex or duplicate roots. S = sign(R + sqrt(D)) * pow(abs(R + sqrt(D)), 1 / 3); T = sign(R - sqrt(D)) * pow(abs(R - sqrt(D)), 1 / 3); t[0] = -A / 3 + (S + T); // Real root. t[1] = -A / 3 - (S + T) / 2; // Real part of complex root. t[2] = t[1]; // Real part of complex root. Im = abs(sqrt(3) * (S - T) / 2); // Complex part of root pair. // Discard complex roots. if (Im !== 0) { t[1] = - 1; t[2] = - 1; } } else { // Distinct real roots. th = acos(R / sqrt(-pow(Q, 3))); t[0] = 2 * sqrt(-Q) * cos(th / 3) - A / 3; t[1] = 2 * sqrt(-Q) * cos((th + 2 * PI) / 3) - A / 3; t[2] = 2 * sqrt(-Q) * cos((th + 4 * PI) / 3) - A / 3; } // Discard out of spec roots. for (i = 0; i < 3; i++) { if (t[i] < 0 || t[i] > 1) { t[i] = -1; } } return t; }, /** * @private * Finds roots of a quadratic equation in t, where t lies in the interval of [0,1]. * Takes three quadratic equation coefficients as parameters. * @param a {Number} * @param b {Number} * @param c {Number} * @return {Array} */ quadraticRoots: function(a, b, c) { var D, rD, t, i; if (a === 0) { return this.linearRoot(b, c); } D = b * b - 4 * a * c; if (D === 0) { // One real root. t = [-b / (2 * a)]; } else if (D > 0) { // Distinct real roots. rD = sqrt(D); t = [(-b - rD) / (2 * a), (-b + rD) / (2 * a)]; } else { // Complex roots. return []; } for (i = 0; i < t.length; i++) { if (t[i] < 0 || t[i] > 1) { t[i] = -1; } } return t; }, /** * @private * Finds roots of a linear equation in t, where t lies in the interval of [0,1]. * Takes two linear equation coefficients as parameters. * @param a {Number} * @param b {Number} * @return {Array} */ linearRoot: function(a, b) { var t = -b / a; if (a === 0 || t < 0 || t > 1) { return []; } return [t]; }, /** * @private * Calculates the coefficients of a cubic function for the given coordinates. * @param P0 {Number} * @param P1 {Number} * @param P2 {Number} * @param P3 {Number} * @return {Array} */ bezierCoeffs: function(P0, P1, P2, P3) { var Z = []; Z[0] = -P0 + 3 * P1 - 3 * P2 + P3; Z[1] = 3 * P0 - 6 * P1 + 3 * P2; Z[2] = -3 * P0 + 3 * P1; Z[3] = P0; return Z; }, /** * @private * Computes intersection points between a cubic spline and a line segment. * Takes in x/y components of cubic control points and line segment start/end points * as parameters. * @param px1 {Number} * @param px2 {Number} * @param px3 {Number} * @param px4 {Number} * @param py1 {Number} * @param py2 {Number} * @param py3 {Number} * @param py4 {Number} * @param x1 {Number} * @param y1 {Number} * @param x2 {Number} * @param y2 {Number} * @return {Array} Array of intersection points, where each intersection point * is itself a two-item array [x,y]. */ cubicLineIntersections: function(px1, px2, px3, px4, py1, py2, py3, py4, x1, y1, x2, y2) { var P = [], intersections = [], // Finding line equation coefficients. A = y1 - y2, B = x2 - x1, C = x1 * (y2 - y1) - y1 * (x2 - x1), // Finding cubic Bezier curve equation coefficients. bx = this.bezierCoeffs(px1, px2, px3, px4), by = this.bezierCoeffs(py1, py2, py3, py4), i, r, s, t, tt, ttt, cx, cy; P[0] = A * bx[0] + B * by[0]; // t^3 P[1] = A * bx[1] + B * by[1]; // t^2 P[2] = A * bx[2] + B * by[2]; // t P[3] = A * bx[3] + B * by[3] + C; // 1 r = this.cubicRoots(P); // Verify the roots are in bounds of the linear segment. for (i = 0; i < r.length; i++) { t = r[i]; if (t < 0 || t > 1) { continue; } tt = t * t; ttt = tt * t; cx = bx[0] * ttt + bx[1] * tt + bx[2] * t + bx[3]; cy = by[0] * ttt + by[1] * tt + by[2] * t + by[3]; // Above is intersection point assuming infinitely long line segment, // make sure we are also in bounds of the line. if ((x2 - x1) !== 0) { // If not vertical line s = (cx - x1) / (x2 - x1); } else { s = (cy - y1) / (y2 - y1); } // In bounds? if (!(s < 0 || s > 1)) { intersections.push([cx, cy]); } } return intersections; }, /** * @private * Splits cubic Bezier curve into two cubic Bezier curves at point z, * where z belongs to a range of [0, 1]. * Accepts cubic coefficients and point z as parameters. * @param P1 {Number} * @param P2 {Number} * @param P3 {Number} * @param P4 {Number} * @param z Point to split the given curve at. * @return {Array} Two-item array, where each item is itself an array * of cubic coefficients. */ splitCubic: function(P1, P2, P3, P4, z) { var zz = z * z, zzz = z * zz, iz = z - 1, izz = iz * iz, izzz = iz * izz, // Common point for both curves. P = zzz * P4 - 3 * zz * iz * P3 + 3 * z * izz * P2 - izzz * P1; return [ [ P1, z * P2 - iz * P1, zz * P3 - 2 * z * iz * P2 + izz * P1, P ], [ P, zz * P4 - 2 * z * iz * P3 + izz * P2, z * P4 - iz * P3, P4 ] ]; }, /** * @private * Returns the dimension of a cubic Bezier curve in a single direction. * @param a {Number} * @param b {Number} * @param c {Number} * @param d {Number} * @return {Array} Two-item array representing cubic's range in the given direction. */ cubicDimension: function(a, b, c, d) { var qa = 3 * (-a + 3 * (b - c) + d), qb = 6 * (a - 2 * b + c), qc = -3 * (a - b), x, y, min = Math.min(a, d), max = Math.max(a, d), delta; if (qa === 0) { if (qb === 0) { return [min, max]; } else { x = -qc / qb; if (0 < x && x < 1) { y = this.interpolateCubic(a, b, c, d, x); min = Math.min(min, y); max = Math.max(max, y); } } } else { delta = qb * qb - 4 * qa * qc; if (delta >= 0) { delta = sqrt(delta); x = (delta - qb) / 2 / qa; if (0 < x && x < 1) { y = this.interpolateCubic(a, b, c, d, x); min = Math.min(min, y); max = Math.max(max, y); } if (delta > 0) { x -= delta / qa; if (0 < x && x < 1) { y = this.interpolateCubic(a, b, c, d, x); min = Math.min(min, y); max = Math.max(max, y); } } } } return [min, max]; }, /** * @private * Calculates a value of a cubic function at the given point t. In other words * returns a * (1 - t) ^ 3 + 3 * b (1 - t) ^ 2 * t + 3 * c (1 - t) * t ^ 3 + d * t ^ 3 * for given a, b, c, d and t, where t belongs to an interval of [0, 1]. * @param a {Number} * @param b {Number} * @param c {Number} * @param d {Number} * @param t {Number} * @return {Number} */ interpolateCubic: function(a, b, c, d, t) { var rate; if (t === 0) { return a; } if (t === 1) { return d; } rate = (1 - t) / t; return t * t * t * (d + rate * (3 * c + rate * (3 * b + rate * a))); }, /** * @private * Computes intersection points between two cubic Bezier curve segments. * Takes x/y components of control points for two Bezier curve segments. * @param ax1 {Number} * @param ax2 {Number} * @param ax3 {Number} * @param ax4 {Number} * @param ay1 {Number} * @param ay2 {Number} * @param ay3 {Number} * @param ay4 {Number} * @param bx1 {Number} * @param bx2 {Number} * @param bx3 {Number} * @param bx4 {Number} * @param by1 {Number} * @param by2 {Number} * @param by3 {Number} * @param by4 {Number} * @return {Array} Array of intersection points, where each intersection point * is itself a two-item array [x,y]. */ cubicsIntersections: function(ax1, ax2, ax3, ax4, ay1, ay2, ay3, ay4, bx1, bx2, bx3, bx4, by1, by2, by3, by4) { /* eslint-disable max-len */ var me = this, axDim = me.cubicDimension(ax1, ax2, ax3, ax4), ayDim = me.cubicDimension(ay1, ay2, ay3, ay4), bxDim = me.cubicDimension(bx1, bx2, bx3, bx4), byDim = me.cubicDimension(by1, by2, by3, by4), splitAx, splitAy, splitBx, splitBy, points = []; // Curves' bounding boxes don't intersect. if (axDim[0] > bxDim[1] || axDim[1] < bxDim[0] || ayDim[0] > byDim[1] || ayDim[1] < byDim[0]) { return []; } // Both curves occupy sub-pixel areas which is effectively their intersection point. if (abs(ay1 - ay2) < 1 && abs(ay3 - ay4) < 1 && abs(ax1 - ax4) < 1 && abs(ax2 - ax3) < 1 && abs(by1 - by2) < 1 && abs(by3 - by4) < 1 && abs(bx1 - bx4) < 1 && abs(bx2 - bx3) < 1) { return [[ (ax1 + ax4) * 0.5, (ay1 + ay2) * 0.5 ]]; } splitAx = me.splitCubic(ax1, ax2, ax3, ax4, 0.5); splitAy = me.splitCubic(ay1, ay2, ay3, ay4, 0.5); splitBx = me.splitCubic(bx1, bx2, bx3, bx4, 0.5); splitBy = me.splitCubic(by1, by2, by3, by4, 0.5); points.push.apply(points, me.cubicsIntersections.apply(me, splitAx[0].concat(splitAy[0], splitBx[0], splitBy[0]))); points.push.apply(points, me.cubicsIntersections.apply(me, splitAx[0].concat(splitAy[0], splitBx[1], splitBy[1]))); points.push.apply(points, me.cubicsIntersections.apply(me, splitAx[1].concat(splitAy[1], splitBx[0], splitBy[0]))); points.push.apply(points, me.cubicsIntersections.apply(me, splitAx[1].concat(splitAy[1], splitBx[1], splitBy[1]))); return points; }, /* eslint-enable max-len */ /** * @private * Returns the point [x,y] where two line segments intersect or null. * Takes x/y components of the start and end point of the segments as parameters. * Based on Paul Bourke's explanation: * http://paulbourke.net/geometry/pointlineplane/ * @param x1 {Number} * @param y1 {Number} * @param x2 {Number} * @param y2 {Number} * @param x3 {Number} * @param y3 {Number} * @param x4 {Number} * @param y4 {Number} * @return {Number[]|null} */ linesIntersection: function(x1, y1, x2, y2, x3, y3, x4, y4) { var d = (x2 - x1) * (y4 - y3) - (y2 - y1) * (x4 - x3), ua, ub; if (d === 0) { // Lines are parallel. return null; } ua = ((x4 - x3) * (y1 - y3) - (x1 - x3) * (y4 - y3)) / d; ub = ((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3)) / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [ x1 + ua * (x2 - x1), // x y1 + ua * (y2 - y1) // y ]; } return null; // The intersection point is outside one or both segments. }, /** * @private * Checks if a point belongs to a line segment. * Takes x/y components of the start and end points of the segment and the point's * coordinates as parameters. * @param x1 {Number} * @param y1 {Number} * @param x2 {Number} * @param y2 {Number} * @param x {Number} * @param y {Number} * @return {Boolean} */ pointOnLine: function(x1, y1, x2, y2, x, y) { var t, _; if (abs(x2 - x1) < abs(y2 - y1)) { _ = x1; x1 = y1; y1 = _; _ = x2; x2 = y2; y2 = _; _ = x; x = y; y = _; } t = (x - x1) / (x2 - x1); if (t < 0 || t > 1) { return false; } return abs(y1 + t * (y2 - y1) - y) < 4; }, /** * @private * Checks if a point belongs to a cubic Bezier curve segment. * Takes x/y components of the control points of the segment and the point's * coordinates as parameters. * @param px1 {Number} * @param px2 {Number} * @param px3 {Number} * @param px4 {Number} * @param py1 {Number} * @param py2 {Number} * @param py3 {Number} * @param py4 {Number} * @param x {Number} * @param y {Number} * @return {Boolean} */ pointOnCubic: function(px1, px2, px3, px4, py1, py2, py3, py4, x, y) { // Finding cubic Bezier curve equation coefficients. var me = this, bx = me.bezierCoeffs(px1, px2, px3, px4), by = me.bezierCoeffs(py1, py2, py3, py4), i, j, rx, ry, t; bx[3] -= x; by[3] -= y; rx = me.cubicRoots(bx); ry = me.cubicRoots(by); for (i = 0; i < rx.length; i++) { t = rx[i]; for (j = 0; j < ry.length; j++) { // TODO: for more accurate results tolerance should be dynamic // TODO: based on the length and shape of the segment. if (t >= 0 && t <= 1 && abs(t - ry[j]) < 0.05) { return true; } } } return false; } };});