/**
 * @class Number
 *
 * Creates a wrapper object to allow you to work with numerical values.
 *
 * The primary uses for the `Number` object are:
 *
 * If the argument cannot be converted into a number, it returns `NaN`.
 *
 * In a non-constructor context (i.e., without the `new` operator), `Number` can
 * be used to perform a type conversion.
 *
 * # Using the `Number` object to assign values to numeric variables
 *
 * The following example uses the `Number` object's properties to assign values to
 * several numeric variables:
 *
 *     biggestNum = Number.MAX_VALUE;
 *     smallestNum = Number.MIN_VALUE;
 *     infiniteNum = Number.POSITIVE_INFINITY;
 *     negInfiniteNum = Number.NEGATIVE_INFINITY;
 *     notANum = Number.NaN;
 *
 * # Using `Number` to convert a `Date` object
 *
 * The following example converts the `Date` object to a numerical value using
 * `Number` as a function:
 *
 *     var d = new Date("December 17, 1995 03:24:00");
 *     print(Number(d));
 *
 * This displays "819199440000".
 *
 * The following example converts the Date object to a numerical value using
 * `Number` as a function:
 *
 * <div class="notice">
 * Documentation for this class comes from [MDN](https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number)
 * and is available under [Creative Commons: Attribution-Sharealike license](http://creativecommons.org/licenses/by-sa/2.0/).
 * </div>
 */
 
/**
 * @method constructor
 * Creates new Number object.
 * @param value
 * The numeric value of the object being created.
 */
 
//Properties
 
/**
 * @property {Number} MAX_VALUE
 * @static
 * The largest positive representable number. The largest negative representable
 * number is `-MAX_VALUE`.
 *
 * The `MAX_VALUE` property has a value of approximately 1.79E+308. Values larger than `MAX_VALUE` are
 * represented as `"Infinity"`.
 *
 * Because `MAX_VALUE` is a static property of `Number`, you always use it as `Number.MAX_VALUE`,
 * rather than as a property of a `Number` object you created.
 *
 * The following code multiplies two numeric values. If the result is less than or equal to
 * `MAX_VALUE`, the `func1` function is called; otherwise, the `func2` function is called.
 *
 *     if (num1 * num2 <= Number.MAX_VALUE)
 *         func1();
 *     else
 *         func2();
 */
 
/**
 * @property {Number} MIN_VALUE
 * @static
 * The smallest positive representable number -- that is, the positive number
 * closest to zero (without actually being zero). The smallest negative
 * representable number is `-MIN_VALUE`.
 *
 * The `MIN_VALUE` property is the number closest to 0, not the most negative number, that JavaScript
 * can represent.
 *
 * `MIN_VALUE` has a value of approximately 5e-324. Values smaller than `MIN_VALUE` ("underflow
 * values") are converted to 0.
 *
 * Because `MIN_VALUE` is a static property of `Number`, you always use it as `Number.MIN_VALUE`,
 * rather than as a property of a `Number` object you created.
 *
 * The following code divides two numeric values. If the result is greater than or equal to
 * `MIN_VALUE`, the `func1` function is called; otherwise, the `func2` function is called.
 *
 *     if (num1 / num2 >= Number.MIN_VALUE)
 *         func1()
 *     else
 *         func2()
 */
 
/**
 * @property {Number} NaN
 * @static
 * Special "not a number" value.
 */
 
/**
 * @property {Number} NEGATIVE_INFINITY
 * Special value representing negative infinity; returned on overflow.
 *
 * The value of `Number.NEGATIVE_INFINITY` is the same as the negative value of the global object's
 * Infinity property.
 *
 * This value behaves slightly differently than mathematical infinity:
 *
 * *   Any positive value, including POSITIVE_INFINITY, multiplied by NEGATIVE_INFINITY is NEGATIVE_INFINITY.
 * *   Any negative value, including NEGATIVE_INFINITY, multiplied by NEGATIVE_INFINITY is
 * POSITIVE_INFINITY.
 * *   Zero multiplied by NEGATIVE_INFINITY is NaN.
 * *   NaN multiplied by NEGATIVE_INFINITY is NaN.
 * *   NEGATIVE_INFINITY, divided by any negative value except NEGATIVE_INFINITY, is
 * POSITIVE_INFINITY.
 * *   NEGATIVE_INFINITY, divided by any positive value except POSITIVE_INFINITY, is
 * NEGATIVE_INFINITY.
 * *   NEGATIVE_INFINITY, divided by either NEGATIVE_INFINITY or POSITIVE_INFINITY, is NaN.
 * *   Any number divided by NEGATIVE_INFINITY is Zero.
 *
 * Several JavaScript methods (such as the `Number` constructor, `parseFloat`, and `parseInt`) return
 * `NaN` if the value specified in the parameter is significantly lower than `Number.MIN_VALUE`.
 *
 * You might use the `Number.NEGATIVE_INFINITY` property to indicate an error condition that returns a
 * finite number in case of success. Note, however, that `isFinite` would be more appropriate in such
 * a case.
 *
 * In the following example, the variable smallNumber is assigned a value that is smaller than the
 * minimum value. When the `if` statement executes, `smallNumber` has the value `"-Infinity"`, so
 * `smallNumber` is set to a more manageable value before continuing.
 *
 *     var smallNumber = (-Number.MAX_VALUE) * 2
 *     if (smallNumber == Number.NEGATIVE_INFINITY) {
 *         smallNumber = returnFinite();
 *     }
 */
 
/**
 * @property {Number} POSITIVE_INFINITY
 * Special value representing infinity; returned on overflow.
 *
 * The value of `Number.POSITIVE_INFINITY` is the same as the value of the global object's Infinity
 * property.
 *
 * This value behaves slightly differently than mathematical infinity:
 *
 * *   Any positive value, including POSITIVE_INFINITY, multiplied by POSITIVE_INFINITY is
 * POSITIVE_INFINITY.
 * *   Any negative value, including NEGATIVE_INFINITY, multiplied by POSITIVE_INFINITY is
 * NEGATIVE_INFINITY.
 * *   Zero multiplied by POSITIVE_INFINITY is NaN.
 * *   NaN multiplied by POSITIVE_INFINITY is NaN.
 * *   POSITIVE_INFINITY, divided by any negative value except NEGATIVE_INFINITY, is
 * NEGATIVE_INFINITY.
 * *   POSITIVE_INFINITY, divided by any positive value except POSITIVE_INFINITY, is
 * POSITIVE_INFINITY.
 * *   POSITIVE_INFINITY, divided by either NEGATIVE_INFINITY or POSITIVE_INFINITY, is NaN.
 * *   Any number divided by POSITIVE_INFINITY is Zero.
 *
 * Several JavaScript methods (such as the `Number` constructor, `parseFloat`, and `parseInt`) return
 * `NaN` if the value specified in the parameter is significantly higher than `Number.MAX_VALUE`.
 *
 * You might use the `Number.POSITIVE_INFINITY` property to indicate an error condition that returns a
 * finite number in case of success. Note, however, that `isFinite` would be more appropriate in such
 * a case.
 *
 * In the following example, the variable `bigNumber` is assigned a value that is larger than the
 * maximum value. When the if statement executes, `bigNumber` has the value "Infinity", so `bigNumber`
 * is set to a more manageable value before continuing.
 *
 *     var bigNumber = Number.MAX_VALUE * 2
 *     if (bigNumber == Number.POSITIVE_INFINITY) {
 *         bigNumber = returnFinite();
 *     }
 */
 
//Methods
 
/**
 * @method toExponential
 * Returns a string representing the number in exponential notation.
 *
 * A string representing a `Number` object in exponential notation with one digit before the decimal
 * point, rounded to `fractionDigits` digits after the decimal point. If the `fractionDigits` argument
 * is omitted, the number of digits after the decimal point defaults to the number of digits necessary
 * to represent the value uniquely.
 *
 * If you use the `toExponential` method for a numeric literal and the numeric literal has no exponent
 * and no decimal point, leave a space before the dot that precedes the method call to prevent the dot
 * from being interpreted as a decimal point.
 *
 * If a number has more digits that requested by the `fractionDigits` parameter, the number is rounded
 * to the nearest number represented by `fractionDigits` digits. See the discussion of rounding in the
 * description of the `toFixed` method, which also applies to `toExponential`.
 *
 *     var num=77.1234;
 *
 *     alert("num.toExponential() is " + num.toExponential()); //displays 7.71234e+1
 *
 *     alert("num.toExponential(4) is " + num.toExponential(4)); //displays 7.7123e+1
 *
 *     alert("num.toExponential(2) is " + num.toExponential(2)); //displays 7.71e+1
 *
 *     alert("77.1234.toExponential() is " + 77.1234.toExponential()); //displays 7.71234e+1
 *
 *     alert("77 .toExponential() is " + 77 .toExponential()); //displays 7.7e+1
 *
 * @param {Number} fractionDigits An integer specifying the number of digits after the decimal
 * point. Defaults to as many digits as necessary to specify the number.
 * @return {String} Exponential notation of number.
 */
 
/**
 * @method toFixed
 * Returns a string representing the number in fixed-point notation.
 *
 * @return {String} A string representation of `number` that does not use
 * exponential notation and has exactly `digits` digits after the decimal place.
 * The number is rounded if necessary, and the fractional part is padded with
 * zeros if necessary so that it has the specified length. If `number` is greater
 * than 1e+21, this method simply calls `Number.toString()` and returns a string
 * in exponential notation.
 *
 * @param {Number} digits The number of digits to appear after the decimal point; this may be a
 * value between 0 and 20, inclusive, and implementations may optionally support a larger range of
 * values. If this argument is omitted, it is treated as 0.
 */
 
/**
 * @method toLocaleString
 * Returns a human readable string representing the number using the locale of the
 * environment. Overrides the `Object.prototype.toLocaleString` method.
 *
 * This method available to numbers will convert the number into a string which is suitable for
 * presentation in the given locale.
 *
 *     var number = 3500
 *     console.log(number.toLocaleString()); // Displays "3,500" in English locale
 *
 * @return {String} String representing the number.
 */
 
/**
 * @method toPrecision
 * Returns a string representing the number to a specified precision in fixed-
 * point or exponential notation.
 *
 * A string representing a `Number` object in fixed-point or
 * exponential notation rounded to precision significant digits. See the
 * discussion of rounding in the description of the `toFixed` method, which also
 * applies to `toPrecision`.
 *
 * If the precision argument is omitted, behaves as Number.toString. If it is a
 * non-integer value, it is rounded to the nearest integer. After rounding, if
 * that value is not between 1 and 100 (inclusive), a RangeError is thrown.
 *
 * @param {Number} precision An integer specifying the number of significant digits.
 * @return {String} String that represents `Number` object.
 */
 
/**
 * @method toString
 * Returns a string representing the specified object. Overrides the
 * `Object.prototype.toString` method.
 *
 * The `Number` object overrides the `toString` method of the `Object` object; it does not inherit
 * `Object.toString`. For `Number` objects, the toString method returns a string representation of the
 * object in the specified radix.
 *
 * The `toString` method parses its first argument, and attempts to return a string representation in
 * the specified radix (base). For radixes above 10, the letters of the alphabet indicate numerals
 * greater than 9. For example, for hexadecimal numbers (base 16), A through F are used.
 *
 * If `toString` is given a radix not between 2 and 36, an exception is thrown.
 *
 * If the radix is not specified, JavaScript assumes the preferred radix is 10.
 *
 *     var count = 10;
 *     print(count.toString());   // displays "10"
 *     print((17).toString());    // displays "17"
 *
 *     var x = 7;
 *     print(x.toString(2));      // displays "111"
 *
 * @param {Number} radix An integer between 2 and 36 specifying the base to use for representing
 * numeric values.
 * @return {String} The number represented as a string.
 */
 
/**
 * @method valueOf
 * Returns the primitive value of the specified object. Overrides the
 * `Object.prototype.valueOf` method.
 *
 * The `valueOf` method of `Number` returns the primitive value of a `Number` object as a number data
 * type.
 *
 * This method is usually called internally by JavaScript and not explicitly in code.
 *
 *     var x = new Number();
 *     print(x.valueOf());     // prints "0"
 *
 * @return {Number} The primitive value of the number.
 */