/** * Utility class to calculate [affine transformation](http://en.wikipedia.org/wiki/Affine_transformation) matrix. * * This class is compatible with [SVGMatrix](http://www.w3.org/TR/SVG11/coords.html#InterfaceSVGMatrix) except: * * 1. Ext.draw.Matrix is not read only. * 2. Using Number as its components rather than floats. * * Using this class helps to reduce the severe numeric * [problem with HTML Canvas and SVG transformation](http://stackoverflow.com/questions/8784405/large-numbers-in-html-canvas-translate-result-in-strange-behavior) * * There's also no way to get current transformation matrix [in Canvas](http://stackoverflow.com/questions/7395813/html5-canvas-get-transform-matrix). */Ext.define('Ext.draw.Matrix', { isMatrix: true, statics: { /** * @static * Return the affine matrix that transform two points (x0, y0) and (x1, y1) to (x0p, y0p) and (x1p, y1p) * @param {Number} x0 * @param {Number} y0 * @param {Number} x1 * @param {Number} y1 * @param {Number} x0p * @param {Number} y0p * @param {Number} x1p * @param {Number} y1p */ createAffineMatrixFromTwoPair: function (x0, y0, x1, y1, x0p, y0p, x1p, y1p) { var dx = x1 - x0, dy = y1 - y0, dxp = x1p - x0p, dyp = y1p - y0p, r = 1 / (dx * dx + dy * dy), a = dx * dxp + dy * dyp, b = dxp * dy - dx * dyp, c = -a * x0 - b * y0, f = b * x0 - a * y0; return new this(a * r, -b * r, b * r, a * r, c * r + x0p, f * r + y0p); }, /** * @static * Return the affine matrix that transform two points (x0, y0) and (x1, y1) to (x0p, y0p) and (x1p, y1p) * @param {Number} x0 * @param {Number} y0 * @param {Number} x1 * @param {Number} y1 * @param {Number} x0p * @param {Number} y0p * @param {Number} x1p * @param {Number} y1p */ createPanZoomFromTwoPair: function (x0, y0, x1, y1, x0p, y0p, x1p, y1p) { if (arguments.length === 2) { return this.createPanZoomFromTwoPair.apply(this, x0.concat(y0)); } var dx = x1 - x0, dy = y1 - y0, cx = (x0 + x1) * 0.5, cy = (y0 + y1) * 0.5, dxp = x1p - x0p, dyp = y1p - y0p, cxp = (x0p + x1p) * 0.5, cyp = (y0p + y1p) * 0.5, r = dx * dx + dy * dy, rp = dxp * dxp + dyp * dyp, scale = Math.sqrt(rp / r); return new this(scale, 0, 0, scale, cxp - scale * cx, cyp - scale * cy); }, /** * @static * Create a flyweight to wrap the given array. * The flyweight will directly refer the object and the elements can be changed by other methods. * * Do not hold the instance of flyweight matrix. * * @param {Array} elements * @return {Ext.draw.Matrix} */ fly: (function () { var flyMatrix = null, simplefly = function (elements) { flyMatrix.elements = elements; return flyMatrix; }; return function (elements) { if (!flyMatrix) { flyMatrix = new Ext.draw.Matrix(); } flyMatrix.elements = elements; Ext.draw.Matrix.fly = simplefly; return flyMatrix; }; })(), /** * @static * Create a matrix from `mat`. If `mat` is already a matrix, returns it. * @param {Mixed} mat * @return {Ext.draw.Matrix} */ create: function (mat) { if (mat instanceof this) { return mat; } return new this(mat); } }, /** * Create an affine transform matrix. * * @param {Number} xx Coefficient from x to x * @param {Number} xy Coefficient from x to y * @param {Number} yx Coefficient from y to x * @param {Number} yy Coefficient from y to y * @param {Number} dx Offset of x * @param {Number} dy Offset of y */ constructor: function (xx, xy, yx, yy, dx, dy) { if (xx && xx.length === 6) { this.elements = xx.slice(); } else if (xx !== undefined) { this.elements = [xx, xy, yx, yy, dx, dy]; } else { this.elements = [1, 0, 0, 1, 0, 0]; } }, /** * Prepend a matrix onto the current. * * __Note:__ The given transform will come after the current one. * * @param {Number} xx Coefficient from x to x. * @param {Number} xy Coefficient from x to y. * @param {Number} yx Coefficient from y to x. * @param {Number} yy Coefficient from y to y. * @param {Number} dx Offset of x. * @param {Number} dy Offset of y. * @return {Ext.draw.Matrix} this */ prepend: function (xx, xy, yx, yy, dx, dy) { var elements = this.elements, xx0 = elements[0], xy0 = elements[1], yx0 = elements[2], yy0 = elements[3], dx0 = elements[4], dy0 = elements[5]; elements[0] = xx * xx0 + yx * xy0; elements[1] = xy * xx0 + yy * xy0; elements[2] = xx * yx0 + yx * yy0; elements[3] = xy * yx0 + yy * yy0; elements[4] = xx * dx0 + yx * dy0 + dx; elements[5] = xy * dx0 + yy * dy0 + dy; return this; }, /** * Prepend a matrix onto the current. * * __Note:__ The given transform will come after the current one. * @param {Ext.draw.Matrix} matrix * @return {Ext.draw.Matrix} this */ prependMatrix: function (matrix) { return this.prepend.apply(this, matrix.elements); }, /** * Postpend a matrix onto the current. * * __Note:__ The given transform will come before the current one. * * @param {Number} xx Coefficient from x to x. * @param {Number} xy Coefficient from x to y. * @param {Number} yx Coefficient from y to x. * @param {Number} yy Coefficient from y to y. * @param {Number} dx Offset of x. * @param {Number} dy Offset of y. * @return {Ext.draw.Matrix} this */ append: function (xx, xy, yx, yy, dx, dy) { var elements = this.elements, xx0 = elements[0], xy0 = elements[1], yx0 = elements[2], yy0 = elements[3], dx0 = elements[4], dy0 = elements[5]; elements[0] = xx * xx0 + xy * yx0; elements[1] = xx * xy0 + xy * yy0; elements[2] = yx * xx0 + yy * yx0; elements[3] = yx * xy0 + yy * yy0; elements[4] = dx * xx0 + dy * yx0 + dx0; elements[5] = dx * xy0 + dy * yy0 + dy0; return this; }, /** * Postpend a matrix onto the current. * * __Note:__ The given transform will come before the current one. * * @param {Ext.draw.Matrix} matrix * @return {Ext.draw.Matrix} this */ appendMatrix: function (matrix) { return this.append.apply(this, matrix.elements); }, /** * Set the elements of a Matrix * @param {Number} xx * @param {Number} xy * @param {Number} yx * @param {Number} yy * @param {Number} dx * @param {Number} dy * @return {Ext.draw.Matrix} this */ set: function (xx, xy, yx, yy, dx, dy) { var elements = this.elements; elements[0] = xx; elements[1] = xy; elements[2] = yx; elements[3] = yy; elements[4] = dx; elements[5] = dy; return this; }, /** * Return a new matrix represents the opposite transformation of the current one. * * @param {Ext.draw.Matrix} [target] A target matrix. If present, it will receive * the result of inversion to avoid creating a new object. * * @return {Ext.draw.Matrix} */ inverse: function (target) { var elements = this.elements, a = elements[0], b = elements[1], c = elements[2], d = elements[3], e = elements[4], f = elements[5], rDim = 1 / (a * d - b * c); a *= rDim; b *= rDim; c *= rDim; d *= rDim; if (target) { target.set(d, -b, -c, a, c * f - d * e, b * e - a * f); return target; } else { return new Ext.draw.Matrix(d, -b, -c, a, c * f - d * e, b * e - a * f); } }, /** * Translate the matrix. * * @param {Number} x * @param {Number} y * @param {Boolean} [prepend] If `true`, this will transformation be prepended to the matrix. * @return {Ext.draw.Matrix} this */ translate: function (x, y, prepend) { if (prepend) { return this.prepend(1, 0, 0, 1, x, y); } else { return this.append(1, 0, 0, 1, x, y); } }, /** * Scale the matrix. * * @param {Number} sx * @param {Number} sy * @param {Number} scx * @param {Number} scy * @param {Boolean} [prepend] If `true`, this will transformation be prepended to the matrix. * @return {Ext.draw.Matrix} this */ scale: function (sx, sy, scx, scy, prepend) { var me = this; // null or undefined if (sy == null) { sy = sx; } if (scx === undefined) { scx = 0; } if (scy === undefined) { scy = 0; } if (prepend) { return me.prepend(sx, 0, 0, sy, scx - scx * sx, scy - scy * sy); } else { return me.append(sx, 0, 0, sy, scx - scx * sx, scy - scy * sy); } }, /** * Rotate the matrix. * * @param {Number} angle Radians to rotate * @param {Number|null} rcx Center of rotation. * @param {Number|null} rcy Center of rotation. * @param {Boolean} [prepend] If `true`, this will transformation be prepended to the matrix. * @return {Ext.draw.Matrix} this */ rotate: function (angle, rcx, rcy, prepend) { var me = this, cos = Math.cos(angle), sin = Math.sin(angle); rcx = rcx || 0; rcy = rcy || 0; if (prepend) { return me.prepend( cos, sin, -sin, cos, rcx - cos * rcx + rcy * sin, rcy - cos * rcy - rcx * sin ); } else { return me.append( cos, sin, -sin, cos, rcx - cos * rcx + rcy * sin, rcy - cos * rcy - rcx * sin ); } }, /** * Rotate the matrix by the angle of a vector. * * @param {Number} x * @param {Number} y * @param {Boolean} [prepend] If `true`, this will transformation be prepended to the matrix. * @return {Ext.draw.Matrix} this */ rotateFromVector: function (x, y, prepend) { var me = this, d = Math.sqrt(x * x + y * y), cos = x / d, sin = y / d; if (prepend) { return me.prepend(cos, sin, -sin, cos, 0, 0); } else { return me.append(cos, sin, -sin, cos, 0, 0); } }, /** * Clone this matrix. * @return {Ext.draw.Matrix} */ clone: function () { return new Ext.draw.Matrix(this.elements); }, /** * Horizontally flip the matrix * @return {Ext.draw.Matrix} this */ flipX: function () { return this.append(-1, 0, 0, 1, 0, 0); }, /** * Vertically flip the matrix * @return {Ext.draw.Matrix} this */ flipY: function () { return this.append(1, 0, 0, -1, 0, 0); }, /** * Skew the matrix * @param {Number} angle * @return {Ext.draw.Matrix} this */ skewX: function (angle) { return this.append(1, Math.tan(angle), 0, -1, 0, 0); }, /** * Skew the matrix * @param {Number} angle * @return {Ext.draw.Matrix} this */ skewY: function (angle) { return this.append(1, 0, Math.tan(angle), -1, 0, 0); }, /** * Reset the matrix to identical. * @return {Ext.draw.Matrix} this */ reset: function () { return this.set(1, 0, 0, 1, 0, 0); }, /** * @private * Split Matrix to `{{devicePixelRatio,c,0},{b,devicePixelRatio,0},{0,0,1}}.{{xx,0,dx},{0,yy,dy},{0,0,1}}` * @return {Object} Object with b,c,d=devicePixelRatio,xx,yy,dx,dy */ precisionCompensate: function (devicePixelRatio, comp) { var elements = this.elements, x2x = elements[0], x2y = elements[1], y2x = elements[2], y2y = elements[3], newDx = elements[4], newDy = elements[5], r = x2y * y2x - x2x * y2y; comp.b = devicePixelRatio * x2y / x2x; comp.c = devicePixelRatio * y2x / y2y; comp.d = devicePixelRatio; comp.xx = x2x / devicePixelRatio; comp.yy = y2y / devicePixelRatio; comp.dx = (newDy * x2x * y2x - newDx * x2x * y2y) / r / devicePixelRatio; comp.dy = (newDx * x2y * y2y - newDy * x2x * y2y) / r / devicePixelRatio; }, /** * @private * Split Matrix to `{{1,c,0},{b,d,0},{0,0,1}}.{{xx,0,dx},{0,xx,dy},{0,0,1}}` * @return {Object} Object with b,c,d,xx,yy=xx,dx,dy */ precisionCompensateRect: function (devicePixelRatio, comp) { var elements = this.elements, x2x = elements[0], x2y = elements[1], y2x = elements[2], y2y = elements[3], newDx = elements[4], newDy = elements[5], yxOnXx = y2x / x2x; comp.b = devicePixelRatio * x2y / x2x; comp.c = devicePixelRatio * yxOnXx; comp.d = devicePixelRatio * y2y / x2x; comp.xx = x2x / devicePixelRatio; comp.yy = x2x / devicePixelRatio; comp.dx = (newDy * y2x - newDx * y2y) / (x2y * yxOnXx - y2y) / devicePixelRatio; comp.dy = -(newDy * x2x - newDx * x2y) / (x2y * yxOnXx - y2y) / devicePixelRatio; }, /** * Transform point returning the x component of the result. * @param {Number} x * @param {Number} y * @return {Number} x component of the result. */ x: function (x, y) { var elements = this.elements; return x * elements[0] + y * elements[2] + elements[4]; }, /** * Transform point returning the y component of the result. * @param {Number} x * @param {Number} y * @return {Number} y component of the result. */ y: function (x, y) { var elements = this.elements; return x * elements[1] + y * elements[3] + elements[5]; }, /** * @private * @param {Number} i * @param {Number} j * @return {String} */ get: function (i, j) { return +this.elements[i + j * 2].toFixed(4); }, /** * Transform a point to a new array. * @param {Array} point * @return {Array} */ transformPoint: function (point) { var elements = this.elements; return [ point[0] * elements[0] + point[1] * elements[2] + elements[4], point[0] * elements[1] + point[1] * elements[3] + elements[5] ]; }, /** * @param {Object} bbox Given as `{x: Number, y: Number, width: Number, height: Number}`. * @param {Number} [radius] * @param {Object} [target] Optional target object to recieve the result. * Recommended to use it for better gc. * * @return {Object} Object with x, y, width and height. */ transformBBox: function (bbox, radius, target) { var elements = this.elements, l = bbox.x, t = bbox.y, w0 = bbox.width * 0.5, h0 = bbox.height * 0.5, xx = elements[0], xy = elements[1], yx = elements[2], yy = elements[3], cx = l + w0, cy = t + h0, w, h, scales; if (radius) { w0 -= radius; h0 -= radius; scales = [ Math.sqrt(elements[0] * elements[0] + elements[2] * elements[2]), Math.sqrt(elements[1] * elements[1] + elements[3] * elements[3]) ]; w = Math.abs(w0 * xx) + Math.abs(h0 * yx) + Math.abs(scales[0] * radius); h = Math.abs(w0 * xy) + Math.abs(h0 * yy) + Math.abs(scales[1] * radius); } else { w = Math.abs(w0 * xx) + Math.abs(h0 * yx); h = Math.abs(w0 * xy) + Math.abs(h0 * yy); } if (!target) { target = {}; } target.x = cx * xx + cy * yx + elements[4] - w; target.y = cx * xy + cy * yy + elements[5] - h; target.width = w + w; target.height = h + h; return target; }, /** * Transform a list for points. * * __Note:__ will change the original list but not points inside it. * @param {Array} list * @return {Array} list */ transformList: function (list) { var elements = this.elements, xx = elements[0], yx = elements[2], dx = elements[4], xy = elements[1], yy = elements[3], dy = elements[5], ln = list.length, p, i; for (i = 0; i < ln; i++) { p = list[i]; list[i] = [ p[0] * xx + p[1] * yx + dx, p[0] * xy + p[1] * yy + dy ]; } return list; }, /** * Determines whether this matrix is an identity matrix (no transform). * @return {Boolean} */ isIdentity: function () { var elements = this.elements; return elements[0] === 1 && elements[1] === 0 && elements[2] === 0 && elements[3] === 1 && elements[4] === 0 && elements[5] === 0; }, /** * Determines if this matrix has the same values as another matrix. * @param {Ext.draw.Matrix} matrix * @return {Boolean} */ equals: function (matrix) { var elements = this.elements, elements2 = matrix.elements; return elements[0] === elements2[0] && elements[1] === elements2[1] && elements[2] === elements2[2] && elements[3] === elements2[3] && elements[4] === elements2[4] && elements[5] === elements2[5]; }, /** * Create an array of elements by horizontal order (xx,yx,dx,yx,yy,dy). * @return {Array} */ toArray: function () { var elements = this.elements; return [elements[0], elements[2], elements[4], elements[1], elements[3], elements[5]]; }, /** * Create an array of elements by vertical order (xx,xy,yx,yy,dx,dy). * @return {Array|String} */ toVerticalArray: function () { return this.elements.slice(); }, /** * Get an array of elements. * The numbers are rounded to keep only 4 decimals. * @return {Array} */ toString: function () { var me = this; return [me.get(0, 0), me.get(0, 1), me.get(1, 0), me.get(1, 1), me.get(2, 0), me.get(2, 1)].join(','); }, /** * Apply the matrix to a drawing context. * @param {Object} ctx * @return {Ext.draw.Matrix} this */ toContext: function (ctx) { ctx.transform.apply(ctx, this.elements); return this; }, /** * Return a string that can be used as transform attribute in SVG. * @return {String} */ toSvg: function () { var elements = this.elements; // The reason why we cannot use `.join` is the `1e5` form is not accepted in svg. return "matrix(" + elements[0].toFixed(9) + ',' + elements[1].toFixed(9) + ',' + elements[2].toFixed(9) + ',' + elements[3].toFixed(9) + ',' + elements[4].toFixed(9) + ',' + elements[5].toFixed(9) + ")"; }, /** * Get the x scale of the matrix. * @return {Number} */ getScaleX: function () { var elements = this.elements; return Math.sqrt(elements[0] * elements[0] + elements[2] * elements[2]); }, /** * Get the y scale of the matrix. * @return {Number} */ getScaleY: function () { var elements = this.elements; return Math.sqrt(elements[1] * elements[1] + elements[3] * elements[3]); }, /** * Get x-to-x component of the matrix * @return {Number} */ getXX: function () { return this.elements[0]; }, /** * Get x-to-y component of the matrix. * @return {Number} */ getXY: function () { return this.elements[1]; }, /** * Get y-to-x component of the matrix. * @return {Number} */ getYX: function () { return this.elements[2]; }, /** * Get y-to-y component of the matrix. * @return {Number} */ getYY: function () { return this.elements[3]; }, /** * Get offset x component of the matrix. * @return {Number} */ getDX: function () { return this.elements[4]; }, /** * Get offset y component of the matrix. * @return {Number} */ getDY: function () { return this.elements[5]; }, /** * Split a transformation matrix into Scale, Rotate, Translate components. * @return {Object} */ split: function () { var el = this.elements, xx = el[0], xy = el[1], yx = el[2], yy = el[3], out = { translateX: el[4], translateY: el[5] }; out.scaleX = Ext.Number.sign(xx) * Math.sqrt(xx * xx + yx * yx); out.scaleY = Ext.Number.sign(yy) * Math.sqrt(xy * xy + yy * yy); out.rotation = Math.atan2(xy, yy); return out; }}, function () { function registerName(properties, name, i) { properties[name] = { get: function () { return this.elements[i]; }, set: function (val) { this.elements[i] = val; } }; } // Compatibility with SVGMatrix. if (Object.defineProperties) { var properties = {}; /** * @property {Number} a Get x-to-x component of the matrix. Avoid using it for performance consideration. * Use {@link #getXX} instead. */ registerName(properties, 'a', 0); registerName(properties, 'b', 1); registerName(properties, 'c', 2); registerName(properties, 'd', 3); registerName(properties, 'e', 4); registerName(properties, 'f', 5); Object.defineProperties(this.prototype, properties); } /** * Performs matrix multiplication. This matrix is post-multiplied by another matrix. * * __Note:__ The given transform will come before the current one. * * @method * @param {Ext.draw.Matrix} matrix * @return {Ext.draw.Matrix} this */ this.prototype.multiply = this.prototype.appendMatrix;});