(function () { if (!Ext.global.Float32Array) { // Typed Array polyfill var Float32Array = function (array) { if (typeof array === 'number') { this.length = array; } else if ('length' in array) { this.length = array.length; for (var i = 0, len = array.length; i < len; i++) { this[i] = +array[i]; } } }; Float32Array.prototype = []; Ext.global.Float32Array = Float32Array; }})(); /** * Utility class providing mathematics functionalities through all the draw package. */Ext.define('Ext.draw.Draw', { singleton: true, radian: Math.PI / 180, pi2: Math.PI * 2, /** * @deprecated Please use the {@link Ext#identityFn} instead. * Function that returns its first element. * @param {Mixed} a * @return {Mixed} */ reflectFn: function (a) { return a; }, /** * Converting degrees to radians. * @param {Number} degrees * @return {Number} */ rad: function (degrees) { return (degrees % 360) * this.radian; }, /** * Converting radians to degrees. * @param {Number} radian * @return {Number} */ degrees: function (radian) { return (radian / this.radian) % 360; }, /** * * @param {Object} bbox1 * @param {Object} bbox2 * @param {Number} [padding] * @return {Boolean} */ isBBoxIntersect: function (bbox1, bbox2, padding) { padding = padding || 0; return (Math.max(bbox1.x, bbox2.x) - padding > Math.min(bbox1.x + bbox1.width, bbox2.x + bbox2.width)) || (Math.max(bbox1.y, bbox2.y) - padding > Math.min(bbox1.y + bbox1.height, bbox2.y + bbox2.height)); }, /** * Checks if a point is within a bounding box. * @param x * @param y * @param bbox * @return {Boolean} */ isPointInBBox: function (x, y, bbox) { return !!bbox && x >= bbox.x && x <= (bbox.x + bbox.width) && y >= bbox.y && y <= (bbox.y + bbox.height); }, /** * Natural cubic spline interpolation. * This algorithm runs in linear time. * * @param {Array} points Array of numbers. */ spline: function (points) { var i, j, ln = points.length, nd, d, y, ny, r = 0, zs = new Float32Array(points.length), result = new Float32Array(points.length * 3 - 2); zs[0] = 0; zs[ln - 1] = 0; for (i = 1; i < ln - 1; i++) { zs[i] = (points[i + 1] + points[i - 1] - 2 * points[i]) - zs[i - 1]; r = 1 / (4 - r); zs[i] *= r; } for (i = ln - 2; i > 0; i--) { r = 3.732050807568877 + 48.248711305964385 / (-13.928203230275537 + Math.pow(0.07179676972449123, i)); zs[i] -= zs[i + 1] * r; } ny = points[0]; nd = ny - zs[0]; for (i = 0, j = 0; i < ln - 1; j += 3) { y = ny; d = nd; i++; ny = points[i]; nd = ny - zs[i]; result[j] = y; result[j + 1] = (nd + 2 * d) / 3; result[j + 2] = (nd * 2 + d) / 3; } result[j] = ny; return result; }, /** * @private * * Calculates bezier curve control anchor points for a particular point in a path, with a * smoothing curve applied. The smoothness of the curve is controlled by the 'value' parameter. * Note that this algorithm assumes that the line being smoothed is normalized going from left * to right; it makes special adjustments assuming this orientation. * * @param {Number} prevX X coordinate of the previous point in the path * @param {Number} prevY Y coordinate of the previous point in the path * @param {Number} curX X coordinate of the current point in the path * @param {Number} curY Y coordinate of the current point in the path * @param {Number} nextX X coordinate of the next point in the path * @param {Number} nextY Y coordinate of the next point in the path * @param {Number} value A value to control the smoothness of the curve; this is used to * divide the distance between points, so a value of 2 corresponds to * half the distance between points (a very smooth line) while higher values * result in less smooth curves. Defaults to 4. * @return {Object} Object containing x1, y1, x2, y2 bezier control anchor points; x1 and y1 * are the control point for the curve toward the previous path point, and * x2 and y2 are the control point for the curve toward the next path point. */ getAnchors: function (prevX, prevY, curX, curY, nextX, nextY, value) { value = value || 4; var PI = Math.PI, halfPI = PI / 2, abs = Math.abs, sin = Math.sin, cos = Math.cos, atan = Math.atan, control1Length, control2Length, control1Angle, control2Angle, control1X, control1Y, control2X, control2Y, alpha; // Find the length of each control anchor line, by dividing the horizontal distance // between points by the value parameter. control1Length = (curX - prevX) / value; control2Length = (nextX - curX) / value; // Determine the angle of each control anchor line. If the middle point is a vertical // turnaround then we force it to a flat horizontal angle to prevent the curve from // dipping above or below the middle point. Otherwise we use an angle that points // toward the previous/next target point. if ((curY >= prevY && curY >= nextY) || (curY <= prevY && curY <= nextY)) { control1Angle = control2Angle = halfPI; } else { control1Angle = atan((curX - prevX) / abs(curY - prevY)); if (prevY < curY) { control1Angle = PI - control1Angle; } control2Angle = atan((nextX - curX) / abs(curY - nextY)); if (nextY < curY) { control2Angle = PI - control2Angle; } } // Adjust the calculated angles so they point away from each other on the same line alpha = halfPI - ((control1Angle + control2Angle) % (PI * 2)) / 2; if (alpha > halfPI) { alpha -= PI; } control1Angle += alpha; control2Angle += alpha; // Find the control anchor points from the angles and length control1X = curX - control1Length * sin(control1Angle); control1Y = curY + control1Length * cos(control1Angle); control2X = curX + control2Length * sin(control2Angle); control2Y = curY + control2Length * cos(control2Angle); // One last adjustment, make sure that no control anchor point extends vertically past // its target prev/next point, as that results in curves dipping above or below and // bending back strangely. If we find this happening we keep the control angle but // reduce the length of the control line so it stays within bounds. if ((curY > prevY && control1Y < prevY) || (curY < prevY && control1Y > prevY)) { control1X += abs(prevY - control1Y) * (control1X - curX) / (control1Y - curY); control1Y = prevY; } if ((curY > nextY && control2Y < nextY) || (curY < nextY && control2Y > nextY)) { control2X -= abs(nextY - control2Y) * (control2X - curX) / (control2Y - curY); control2Y = nextY; } return { x1: control1X, y1: control1Y, x2: control2X, y2: control2Y }; }, /** * Given coordinates of the points, calculates coordinates of a Bezier curve that goes through them. * @param dataX x-coordinates of the points. * @param dataY y-coordinates of the points. * @param value A value to control the smoothness of the curve. * @return {Object} Object holding two arrays, for x and y coordinates of the curve. */ smooth: function (dataX, dataY, value) { var ln = dataX.length, prevX, prevY, curX, curY, nextX, nextY, x, y, smoothX = [], smoothY = [], i, anchors; for (i = 0; i < ln - 1; i++) { prevX = dataX[i]; prevY = dataY[i]; if (i === 0) { x = prevX; y = prevY; smoothX.push(x); smoothY.push(y); if (ln === 1) { break; } } curX = dataX[i+1]; curY = dataY[i+1]; nextX = dataX[i+2]; nextY = dataY[i+2]; if (isNaN(nextX) || isNaN(nextY)) { smoothX.push(x, curX, curX); smoothY.push(y, curY, curY); break; } anchors = this.getAnchors(prevX, prevY, curX, curY, nextX, nextY, value); smoothX.push(x, anchors.x1, curX); smoothY.push(y, anchors.y1, curY); x = anchors.x2; y = anchors.y2; } return { smoothX: smoothX, smoothY: smoothY } }, /** * @method * @private * Work around for iOS. * Nested 3d-transforms seems to prevent the redraw inside it until some event is fired. */ updateIOS: Ext.os.is.iOS ? function () { var el = Ext.getBody().createChild({ style: 'position: absolute; top: 0px; bottom: 0px; left: 0px; right: 0px; background: rgba(0,0,0,0.001); z-index: 100000' }); Ext.draw.Animator.schedule(function () { el.destroy(); }); } : Ext.emptyFn});